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Abstract. The research article primarily focuses on the criteria for selecting best stochastic linear regression model namely pC -

conditional mean square error prediction, Generalized Mean Squared Error criterion (GMSE) which comes out of the deficiencies 

of 
2R  and  

2R  criteria. The most uncomfortable aspect of both 
2R  and  

2R  measures is that they do not include a 
consideration of losses associated with choosing an incorrect model. C.L.Cheng et al, in 2014, in their research paper proposed 

the goodness of fit statistics based on the variants of 
2R for multiple measurement errors and also studied the asymptotic 

properties of the conventional 
2R and the proposed   variants of 

2R like goodness of fit statistics analytically and numerically. 

M.HasheemPesaran et al, in 1994, in their paper discussed why both
2R  and  

2R  are inappropriate as a measure of fit and for 
model selection in the sense that their use does not guarantee that true model is chosen even asymptotically .D.Wallach et.al, in 
1987, in their paper used the mean square error of prediction (MSEP) as a criterion for evaluating models for studying ecological 
and agronomic systems. M.Revan Ozkale, in 2009, in his paper introduced a new estimator by combining ideas underlying the 
mined and the ridge regression estimators under the assumption that the errors are not independent and identically distributes 
when there are stochastic linear restrictions on the parameter vector. David A. Mc Allester, in 2003, in his article, gave a PAC-
Bayesian performance guarantee for stochastic model selection that is superior to analogous guarantees for deterministic model 

selection. 

INTRODUCTION 

Stochastic modelling is the art and science of using statistical techniques for the measurement of 

relationships between the variables. The formulation or specification of a stochastic model is an art just as using 

knowledge or architecture to design a building. In the specification of a stochastic model the most important 

variables are selected while the nonessential variables are discarded. The crucial relationships are formulated and 

incorporated in the model. Best stochastic models are like best architectural designs and can serve as prototype to be 

followed in the future investigation. A set of mathematical equations concerns with two or more variables refers to a 

mathematical model. By introducing an error random variable or a disturbance term the mathematical becomes 

statistical model or a stochastic model. Now- a- days modelling is a new and fertile area of research in mathematical 
and statistical sciences. Selection of the best model is an important part of stochastic model building. A large 

number of methods have been developed in the literature for selecting bets stochastic linear regression model. 
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THE 
pC -CONDITIONAL MEAN SQUARE ERROR PREDICTION CRITERION 

(OR) 
pC -CRITERION FOR STOCHASTIC LINEAR REGRESSION MODEL 

SELECTION 

There are deficiencies in the criteria 
2R  and  

2R  need not be the most powerful of the criteria involving 
the quadratic form of residuals that have as their property: The expected value is minimized by the true model. The 

most uncomfortable aspect of the both  
2R  and  

2R  , measures is that they do not include a consideration of losses 
associated with choosing an incorrect model. That is they do not consider within a decision context the purpose for 

which the model is to be used. With the goal of eliminating this deficiency, a criterion based on Mean Square 

Prediction Error for stochastic linear regression model selection has been suggested and it is known as 
pC -

criterion. 

Suppose  
21 21 knkn

XXX


  

where 1X is
1kn  matrix of included variables 2X is

2kn matrix of excluded variables 21 kkk  is 

the total number of variables in the model . 

Write the linear model as 

  2211 XXY                                                 (1) 

Where 1 is 11 k  and 2 is 12 k  vectors of parameters. Consider the subset model (restricted model) 

of (1) 

uXY  11 where   22Xu  

Define the mean square error loss in prediction as  
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Here 
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1  is the restricted least squares estimator of 1 . 
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 Under linear restriction    .
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*  be the restricted least squares estimator 

of  then it can be shown that  
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It can be shown that  

   21

2*, BiaskXX              (2) 

 

             Where       221

1

11122

2)(  XXXXXIXBias 


 

=sum of the squares of the bias. 

The criterion for stochastic linear model selection is to estimate the unknown parameters 
2  and 2 and 

choose the model with the smallest estimated mean square prediction error. 
In terms of standardized risk, under squared error loss (2) can be written as  
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Also we know that  
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By substituting (4) in (2) we get  
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If the unknown parameters are replaced with the unbiased estimates in (5) we get 
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When the subset model has small bias then 
2*

1 is approximately equal to 
2̂  and 

pC  is approximately 

equal to 
1K i.e

pC □k1. 

Under 
pC  criterion we calculate 

pC  values for the possible 2k subsets of models and chose the model in 

which 
pC □k1. 

GENERALIZED MEAN SQUARED ERROR (GMSE) CRITERION FOR 

STOCHASTIC LINEAR REGRESSION MODEL SELECTION 

In computing two estimates which are both unbiased but have different variances one may prefer estimator 

with the smaller variance. In a class of all unbiased estimators one may find an estimator with minimum variance is 

known as Best Unbiased Estimator or Minimum Variance Unbiased Estimator (MVUBE) for the given parameter. 

A different problem arises in comparing two biased estimators with different variables. In this case the 
Mean Squared Error (MSE) criterion may be used to compare these two estimators. 

Suppose that ̂  be a biased estimator of parameter . The MSE of ̂  may be defined as 

      ˆ,ˆ)ˆ(
2
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EEEEEEE
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Thus under MSE criterion, a biased estimator may be preferred to one with a smaller or zero bias if its 

variance is sufficiently smaller to offset the larger bias. 

Suppose that ̂  be a estimator of parametric vector   in the standard stochastic regression model 

  XY  

The generalized MSE or Risk matrix of ̂  is defined as  
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The diagonal elements of (7) are the mean squared errors for each element ̂  and the trace of the MSE 

matrix is equal to the Mean Squared Error Loss 

Mean Squared Error Loss: 
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where   ˆ,L  is error loss. 

Under GMSE criterion, an estimator ̂  is equal to or superior to another estimator 
*  if the MSE for 

every liner combination of elements of ̂  is equal to or less than the MSE of the same combination of elements of

* . 

In other words estimator ̂ is better than 
*  under GMSE criterion if 

   *E  ,    ˆE  and 

      





  ˆˆ** EE  

where is positive semi definite matrix. 

Under GMSE criterion the restricted least squares (RLS) estimator RLS
* is a biased estimator and it is 

superior to unbiased OLS estimator  forOLS
ˆ . 

CONCLUSIONS 

Owing to the deficiencies of the criteria
2R and

2R as they are not most powerful the pC conditional Mean 

square error Prediction criterion , generalized Mean squared Error criterion for stochastic linear regression model 

has been presented in the above research article. In the context of future research some special problems viz. model 

selection, miss-specification of the model and the selection of regressors specification errors along with their sources 

can be evaluated. 
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